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Transformation-induced plasticity (TRIP) in steel may be a cause of distortion of workpieces. Therefore,
it is necessary to study this phenomenon to develop knowledge for the simulation of production processes
(e.g., for heat treatment). The well-known Leblond model for TRIP becomes formally singular when the
phase fraction p of the forming phase is zero. Usually, this singularity is avoided by changing the model via
a cutoff procedure. This article addresses those conditions in which the singularity is formally removable
and the output differences of the noncutoff and the cutoff models. Depending on the thresholds used for
the cutoff functions, it turns out that the differences might be of an essential magnitude. Moreover, for
constant temperature and stress, these differences turn up regardless of what phase transition law for p is
used.
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1. Introduction and Motivation

Phase transformations in steel under nonzero deviatoric
stress yield a permanent volume-preserving deformation, even
if the von Mises (macro) stress does not achieve the yield
stress. This phenomenon is called transformation-induced plas-
ticity (TRIP) and cannot be described by classic plasticity. In
the case of the formation of one phase (e.g., pearlite from
austenite), TRIP can be taken into account by an additional
(linearized) strain tensor �TRIP. The corresponding Franitza-
Mitter-Leblond proposal in the incremental form is (Ref 1-6):

d

dt
�TRIP�t� =

3

2
����t�, �*�t�� �* �t�

d

dt
� �p�t�� (Eq 1)

where � is the temperature, �* is the deviator of the stress
tensor �, � > 0 is the Greenwood-Johnson parameter possibly
depending on � and �*, � is the saturation function, p is the
volume fraction of the forming phase, and t � 0 is the time.

Further, � is assumed to be a monotonic differentiable func-
tion on [0, 1] with:

��0� = 0 and ��1� = 1 (Eq 2)

There are several proposals (Ref 4) for �, partially based on
experiments, partially derived from theoretical considerations,
like the one due to Leblond et al. (Ref 2), which uses:

��p� := p�1 − ln�p��, for p ∈�0,1� and ��0� := 0 (Eq 3)

From Eq 1 and 3, the Leblond model for TRIP is obtained in its
integral form, which is often used in calculations (Ref 7):

�TRIP�t� =
3

2 �
0

t

����s�, �* �s�� �* �s� �−ln�p�s���
d

ds
p�s� ds

(Eq 4)

Due to the logarithm, the integrand in Eq 4 has a singularity at
p = 0. Other proposals for � (Ref 4) do not lead to such
singularities, and so the model, Eq 4, is used.

For the sake of brevity, in Eq 4 corrections for larger
stresses (Ref 2) are omitted, and it should be noted that inclu-
sion of these stresses would not cause any additional math-
ematical problems in the discussion. For the same reason, any
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Nomenclature

�TRIP strain tensor due to TRIP
t time
� temperature
�, �* stress tensor and its deviator, respectively
� Greenwood-Johnson parameter of TRIP
� saturation function of TRIP
p volume fraction of the forming phase
�TRIP,� TRIP strain obtained via a cutoff procedure
� cutoff threshold
H Heaviside function
n, � Johnson-Mehl-Avrami parameters for isothermal

phase transformations
g function taking into account nonisothermal phase

transformation
f function taking into account stress-dependent

phase transformation
	 temperature dependent function in a special

transformation law (Ref 8)
�̂ integral average of the temperature (Ref 10)

 positive constant (Ref 10)
�ms martensite-start temperature
c positive constant (Ref 11)
E(�) relative error when using a cutoff procedure
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dependence of �TRIP, �, �*, and p on spatial coordinates is
ignored.

To avoid an experimentally observed overestimation for
small values by Eq 3, Leblond et al. (Ref 2) introduced a cutoff
procedure in the following way:

�TRIP,� =
3

2 �
0

t

����s�, �* �s���*�s��−ln�p�s���
d

ds
p�s� H�p�s� − �� ds

(Eq 5)

where H is the Heaviside function and � is a threshold value
between 0 and 1. Clearly, in Eq 5 the above-mentioned singu-
larity is also avoided. This cutoff procedure is discussed in
section 4.1.

To use Eq 4 or 5, a transformation law for p in Eq 4 is
needed. Some possible examples are noted below, and the in-
terested reader is referred to Böhm et al. (Ref 8) for a survey.

1.1 Example 1: Diffusive Transformation, Generally
Nonisothermal (Ref 9, 10)

The phase fraction p = p(t) is determined by the nonzero
solution of a modified JMA differential equation (for a com-
plete transformation):

d

dt
p�t� = �1 − p�t��

n���t��

����t��
�−ln�1 − p�t���

n���t��−1

n���t��

� �1 − g���t��
d

dt
��t�� f ���t�� (Eq 6)

with the initial value:

p�0� = 0 (Eq 7)

where n and � are parameters obtained for the isothermal trans-
formation, g is a correcting function for the nonisothermal
transformation (see Ref 9 and 10), and f represents a correcting
function for the stress-dependent transformation with f(0) � 1
(Ref 5 and 6 for details).

1.2 Example 2

Here are alternative differential equations for p = p(t), non-
isothermal transformations (Ref 8, 11, 12):

d

dt
p�t� = �1 − p�t�� 	���t�� (Eq 8)

where 	 is continuous, 	(s) � 0 and 	(�0) > 0.

1.3 Example 3

A modification of Eq 6 for nonisothermal transformations
involving temperature averages is

d

dt
p�t� = �1 − p�t��

n��̂�

���̂�
�−ln�1 − p�t���

n��̂�−1

n��̂� f ���t�� (Eq 9)

where the current temperature �(t) is substituted by its integral
average:

��t� := 
�1 − e−
t�−1 �
0

t

��s� e−
�t−s�ds (Eq 10)

for t > 0, where �̂(0) :� �(0), n, and � are as shown in Eq 6,
and 
 > 0 is a parameter that has to be determined by experi-
ments (Ref 8 for details and Ref 11 for some validation based
on dilatometer data). The use of the average temperature in-
stead of its current value takes into account the influence of the
history of the temperature.

1.4 Example 4

In the case of the formation of martensite, the Koistinen-
Marburger formula is

p��� = 1 − e− ��ms−���c (Eq 11)

where c is a positive constant. Assuming that � is smaller than
the martensite-starting temperature �ms, Eq 11 expresses the
amount of martensite formed from pure austenite when cooling
to �. Because the martensite transformation occurs very
quickly, the value p(�) is assumed to equal the current one
(i.e., p(t)) (Ref 8 for a discussion). So Eq 11 evolves into Eq 12
by differentiation with respect to t:

d

dt
p�t� = −�1 − p�t��

1

c

d

dt
��t� (Eq 12)

with Eq 7 and assuming �ms = �(0) and also a strong cooling,
that is, d/dt� (t) < 0.

With the preceding as an introduction, the purpose of this
article is to answer two questions:

• Under which conditions on the parameters n and � does the
integral in Eq 4 exist despite the singularity at p = 0?

• In cases in which the answer in 1 is affirmative: What is
the relative error made by substituting Eq 4 with Eq 5?
And how does the error depend on the choice of the trans-
formation law (e.g., examples 1 to 4)?

2. Some Formal Mathematical Assumptions

Some assumptions are needed in the subsequent discussion:

�, �,
d

dt
�, �, n���, ����, f and g are continuous with (Eq 13)

n��� 
 0, there is some �o 
 0, such that: ���� � �o

for all � � 0 (Eq 14)
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3. Results

3.1 Theorem 1

The assumptions in Eq 6, 13, 14, and:

n��o� 
 1, with �o = ��0� corresponding to p�0� = 0 (Eq 15)

imply that

lims→0ln�p�s��
d

ds
p�s� = 0 (Eq 16)

Therefore, the singularity of the integrand in Eq 4 is removable,
and the integral in Eq 4 exists, that is,

|�
0

t

����s�, �* �s�� �* �s� �−ln�p�s���
d

ds
p�s� ds| � +� for all t � 0

(17)

3.1.1 Proof. Because [− ln(1 – p)] ≈ p for small p (>0), the
insertion of Eq 6 into Eq 4 shows that the essential term gov-
erning the behavior near p = 0 (i.e., near s = 0) is:

�−ln� p�s���p�s�

n���s��−1

n���s�� (Eq 18)

The continuity of n yields numbers s0 > 0 and n0 with 1 < n0

< n (�0) and

no � n���s�� � no + 1 for 0 � s � so (Eq 19)

This implies for Eq 18:

0 � �−ln� p�s��� p�s�

n���s��−1

n���s�� � �−ln� p�s��� p�s�

no−1

no+1 for 0 � s � so

(Eq 20)

Because [(no − 1)/(no + 1) 
 0], the rest follows from standard
properties of logarithms.

Equation 15 corresponds to the observation that the diffu-
sive phase transformations start with a zero rate (i.e., at the
beginning of the transformation its p-curve has a horizontal
tangent). Based on experiments with 100Cr6 steel, Dalgic and
Löwisch (Ref 13) obtained n > 1 for pearlitic and bainitic
transformations. In the study by Hunkel et al. (Ref 9), values of
n between 0 and 1 can be found.

3.2 Remark 2

Assume only Eq 13 and 14. Then, inserting Eq 6 into Eq
4, one obtains:

lims→0�−ln� p�s���
d

ds
p�s� = + � (Eq 21)

but the integral in Eq 4 exists (i.e., Eq 17 is still valid).
The proof of the validity of Eq 17 and 21 also carries over

to example 3: replacing Eq 6 by Eq 9 and 10. Example 2 is

covered by the preceding remark by using Eq 8 instead of Eq
6 (i.e., one has Eq 21).

3.3 Theorem 3

Under the assumptions of Eq 7, 11, and 12, one obtains Eq
17 and 21.

3.3.1 Proof. Inserting Eq 12 and 13 into Eq 4 and substi-
tuting

p�s� := 1 − e−��ms−��s���c (Eq 22)

which leads to

�
0

p0

�−ln� p��dp � + � �with 0 � p0 �1� (Eq 23)

3.4 Remark 4

All of the above results do not depend on the cooling rate,
meaning that they are independent of a special behavior of ��.

4. Quantitative Discussion

4.1 Relative Error When Using Cutoff Functions

The relative error when using Eq 5 instead of Eq 4 can be
estimated for the complete transformation under constant tem-
perature and stress. To this end, it is assumed that:

� = const. and � = const. (Eq 24)

implies that

� = const. (Eq 25)

It has been assumed that t� is a sufficiently large time after
which the transformation can be considered to be complete.
Due to Eq 2 to 4, the full TRIP strain determined by Eq 4
becomes:

�TRIP�t�� =
3

2
��* (Eq 26)

whereas the full TRIP strain by the cutoff model (i.e., Eq 5),
becomes:

�TRIP,��t�� =
3

2
��*�1 − ����� (Eq 27)

Hence, the relative error E(�) :� �TRIP(t�)−1[�TRIP(t�) −
�TRIP,�(t�)] is:

E��� = ���� (Eq 28)

Note that under constant temperature and stress Eq 28 is inde-
pendent of the choice of the phase transformation law provided
by examples 1 to 4 (e.g., the value � � 0.03 is used by
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Leblond et al. (Ref 2) and in SYSWELD). For comparison,
E(0.01) is calculated to obtain:

E�0.03� = ��0.03� = 0.135 and E�0.01� = ��0.01� = 0.056
(Eq 30)

respectively. Although E(�) → 0 as � → 0, this means that
there is an essential relative error that cannot be neglected.

In reality, the stress is hardly constant. Large stresses that
occur during heat treatment (e.g., during quenching) could in-
crease E(�), whereas small stresses could decrease this value.

4.2 Further Remarks

Taleb and Sidoroff (Ref 3) have proposed a threshold de-
pending on material parameters that include, in particular, the
yield stress of the parent phase. Additionally, they modified the
“saturation function (�),” obtaining �(0) > 0 instead of Eq 3.
Estimating this threshold for 100Cr6 steel for the transforma-
tion of austenite to pearlite at 600 °C according to their ap-
proach, an approximate threshold value of 0.08 is obtained with
a relative error of 0.08.

5. Conclusions

• For the diffusive transformations in examples 1 and 3, the
Leblond model in Eq 4 involves a removable singularity
under the assumptions of Eq 13 to 15, and the integral in
Eq 4 exists.

• However, without Eq 15, as well as for a diffusive trans-
formation in example 2, a nontrivial singularity is ob-
tained, but the integral in Eq 4 still exists.

• The last statement is valid for martensitic transformations
(example 4).

• From a purely mathematical point of view, the Leblond
model in Eq 4 is applicable without a cutoff procedure.
Some difficulties may occur when calculating values by
numerical programs, which generally cannot deal with im-
proper integrals. It is then necessary to adopt an appropri-
ate program.

• Using a cutoff function, one can avoid these kinds of sin-
gularities, but essential differences are obtained. For con-
stant temperature and stress, this last assertion does not
depend on the model used for the phase transformation, if
the integral in Eq 4 exists. Thus, using cutoff functions,
one can obtain different models. Even different � for
�TRIP,� in Eq 5 yield relatively large errors (Eq 30).
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